Abstract: Middle Palaeolithic blade industries have been known for many years from the southern part of the Great Caucasus. Recently published technological studies demonstrate strong affinities between the laminar assemblages from Djruchula Cave (Republic of Georgia) and those from several Near Eastern Early Middle Paleolithic sites. A series of new thermoluminescence dates from Djruchula Cave indicate at least two distinct human occupation phases (between 210/260 ka for Layer 2 and later around 140 ka for Layer 1), with a long chronological gap in between. Combined with the available dates from Near Eastern laminar assemblages, these new results illustrate the use of the same production systems of blades across these two large regions between 260 and 140,000 years ago.

Résumé : Des industries à lames du Paléolithique moyen ont été identifiées depuis longtemps dans la partie sud du Grand Caucase. Les études technologiques récemment publiées sur les industries de Djruchula en Géorgie ont montré les fortes affinités que ces dernières présentaient avec les industries laminaires de cette période, désormais bien connues au Proche-Orient. Une petite série de datations par la méthode de la thermoluminescence, provenant de la grotte de Djruchula (fouilles D.M. Tushabramishvili) met en évidence l’existence de deux périodes d’occupation dans cette grotte (entre 210 et 260 000 ans pour la couche 2, et aux environs de 140 000 ans pour la couche 1), séparées par un long laps de temps sans occupation humaine. Combinés avec les datations précédemment acquises au Proche-Orient, ces résultats montrent l’existence, entre 260 et 140 000 ans, de traditions techniques très proches, caractérisées par l’adoption des mêmes systèmes de production de lames dans ces deux grandes régions.

Keywords: Middle Palaeolithic; Southern Caucasus; Radiometric Dating; Laminar Assemblages.

Mots-clés: Paléolithique moyen ; Sud Caucase ; Datations radiométriques ; Outillages laminaires.

Recent research demonstrates that the production of blades is an integral part of Mousterian technological variability since the last ca 250 ka. In addition to the well documented and dated blade assemblages from the Early Mousterian in the Levant and from Northwestern Europe during the Last Interglacial, we present similar new data from Djruchula Cave located in the Southern Caucasus.

In the Levant, several researchers have noted the systematic production of elongated blanks (blades and elongated
points) and the persistence of this technological tradition, although these researchers have also identified technological differences among the published assemblages. Stratigraphically, elongated blanks, or blades as they are most often termed, are associated with Middle Pleistocene deposits dated to the Early Levantine Mousterian around between 270 and 160 ka ago (TL and U-series ages), and several core reduction strategies were employed in the production of blades. The excavators of Djurchula and Koudaro Caves in the Southern Caucasus noted certain affinities between the assemblages of these sites and the Early Levantine Middle Palaeolithic blade assemblages, and the laminar character of these assemblages led V.P. Liubin to classify them as immediate precursors of the Upper Palaeolithic.

The clearest example of a blade assemblage from the Southern Caucasus is that discovered by D.M. Tushabramishvili at Djurchula Cave in the 1950’s. D.M. Tushabramishvili proposed the name “Djurchula-Koudaro group” and recently L.V. Golovanova and B. Doronichev referred to it as the “Djurchulan.” The morphological resemblance of these assemblages to those from the Levant has been recognized, however, they are presumed to have been produced exclusively via the Levant lois method.

In an attempt to assess these interpretations the lithic assemblages from Djurchula Cave (fig. 1) were analyzed in detail, and the results demonstrate their affinities with the Levantine industries. But it is also important to establish the chronological relationship with Levantine sites and so a dating program was initiated at Djurchula Cave. It is our goal to test whether the apparent technological affinities identified across Southwestern Asia during the Middle Pleistocene reflect a geographically broad, largely contemporaneous cultural adaptation.

DJRUCHULA CAVE AND ITS CONTEXT

Djurchula Cave is located in the Imereti region of the Republic of Georgia (fig. 2), in the southern foothills of the Great Caucasus. The Caucasus is a major range reaching heights of 5,000 m asl and stretches roughly 1,000 km between the Black and Caspian seas. Such boundary conditions prevailed during the Late Mousterian (~38,000 14C BP) as evidenced by the recovery of very different types of Middle Palaeolithic industries on either side of the Caucasus (e.g., Mezmaiskaya Cave and Ortvalle Klde). However during the Early Upper Palaeolithic (< 38,000 14C BP) significant technological and typological similarities are clearly evident between the two regions, probably reflecting the swift penetration of this geographic boundary by Early Upper Palaeolithic people.

Djurchula Cave is situated at an altitude of about 600 m asl and at an elevation of about 40 m above a tributary of the Kvirila River that bears the same name. It is a large hall that opens to the northeast. During the excavations of D.M. Tushabramishvili, conducted from 1958-1967, almost the entire volume of the cave was excavated, leaving only a two-meter deep section (tèmoin) of sediment along the back wall. D.M. Tushabramishvili identified several lithostratigraphic layers, mostly composed of clayey sediments with angular limestone fragments. In this sequence two archaeological layers were identified, namely Layers 1 and 2, separated by about one meter of sterile sediment. At the top, archaeological Layer 1 is composed of lithostratigraphic Sub-Layers I-VII, with the majority of archaeological material deriving from Layers II-VI. Archaeological Layer 2 includes lithostratigraphic Layers IX-XVI, but the archaeological material was collected essentially from Layer XII (fig. 4).

D.M. Tushabramishvili and N. Tushabramishvili conducted lithic analyses of the assemblages from Layers 1 and 2, focusing on typological classification, but this research was not published; a summary of the lithic data is available in D.S. Adler and N. Tushabramishvili. Recently L. Meignen et al.
Fig. 1 – Lithic assemblages from Djruchula Cave: elongated retouched points (2 and 3, with invasive retouches on ventral face). (Drawings originally drawn by D. TUSHABRAMISHVILI have been reworked and standardized by J. COURBET, CNRS-UMR 6130, CEPAM.)
and N. Tushabramishvili18 published a detailed technotypological and techno-economic study that also took advantage of the available results concerning the Middle Palaeolithic blade assemblages of the Levant. This study demonstrates the strong resemblance between the lithic industries from Djruchula Cave and some Near Eastern Early Middle Palaeolithic sites (e.g., Hayonim Lower E and F, Hummal and Abou Sif) in terms of core reduction strategies (coexistence of Levallois and Laminar production systems) and tool-kits (numerous diverse retouched points).19 According to Meignen and Tushabramishvili,20 artifact densities, calculated as the average number of finds per cubic meter, are low in Layers 1 and 2 (n = 14 and 19, respectively) and most of these are retouched elongated products (blades and points). This observation led previous researchers to conclude that the occupations at Djruchula Cave were brief and ephemeral.21 The raw materials used for the production of the lithic artifacts originate from various local sources. Cenomanien-Turonien flint of red or brown-yellow colors was likely collected on the plateau above the cave (< 5 km), while a variety of other nodules and cobbles were gathered from the gravels of the Djruchula River immediately below the site. The only non-local raw material, represented in very low frequencies, is obsidian, the nearest source of which is > 100 km away, to the southeast, in Chikiani near Paravani Lake.

Detailed techno-economic studies22 demonstrate that the behavioral patterns observed at Djruchula Cave shifted from the relatively intensive use of the cave (provisioning activities, such as the importation of finished tools, and \textit{in situ} core reduction of local raw materials) in the earliest occupation (Layer 2), to more ephemeral, task-specific use during later occupations (Layer 1), as evidenced by a reliance on curated tools. In these respects Djruchula Cave does not represent a central habitation site, but rather a specialized, perhaps seasonal hunting camp. We believe that the site functioned as a known point in the landscape where small groups of hunter-gatherers occasionally brought prey after successful hunts.

DATING THE DJRUCHULA LAMINAR INDUSTRY

In order to obtain chronological information for Layers 1 and 2, a sample of artifacts showing signs of past heating were selected by N. Mercier, D.S. Adler and N. Tushabramishvili from the collections of the Georgian National Museum, Tbilisi, and subjected to Thermoluminescence (TL) dating; it was not feasible to obtain new samples from the cave as little sediment remains for excavation. Study of each sample’s TL signal indicated that only six pieces had been heated to a temperature sufficiently high for dating purposes.23 Museum records indicate that samples DJ1, DJ2, DJ21 and DJ22 were recovered from Layer 2 while DJ6 and DJ15 come from the Layer 1. Half of the samples (DJ6, DJ15 and DJ21) originated from the central part of the cave where all the original sediment was removed during past excavations, while the others (DJ1, DJ2 and DJ22) come from the back of the cave, roughly two meters away from the remnant sediment profile (témoin).

In the present study, the greatest difficulty in obtaining reliable dates was to estimate the radiation dose received by the samples during their burial. In particular, it was of paramount importance to get maximum information on the gamma dose-rate to which the flints were subjected in the sediments. For this purpose, three CaSO\textsubscript{4}:Dy dosimeters were inserted three meters apart at the back of the cave for one year. They registered values that correspond to dose-rates of 1,479, 1,436 and 963 μGy/a. When retrieving the dosimeters, it was observed that one was situated within the vicinity of a large rock that had fallen from the roof and it is suspected that the recorded

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig_2.png}
\caption{Map of Georgia and location of the three main laminar assemblages (Djruchula, Koudaro and Tsona).}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Layer & Artifacts & Dates \\
\hline
1 & DJ1 & 1,200 ± 60 \textsubscript{14}C yr B.P. \\
2 & DJ2 & 1,200 ± 60 \textsubscript{14}C yr B.P. \\
\hline
\end{tabular}
\end{table}
Fig. 3 – View of Djruchula Cave close to the end of D. Tushabramishvili’s excavations. (Photo by D.M. TUSHABRAMISHVILI.)

Fig. 4 – Profile of Djruchula Cave after D.M. Tushabramishvili 1960-1961 (unpublished).
dose-rate (963 µGy/a) is not representative of the sediment. This measurement was discarded. To get additional data, three analyses were performed in the remaining sediments with a probe sensitive to gamma rays. Analysis of the spectra determined the following dose-rates (1,220, 1,350 and 1,209 µGy/a), which are in the same range as the dosimeters results. The combination of the five selected values led to an average dose-rate of 1,339 ± 123 µGy/a. Since the standard deviation does not exceed 10%, it seems that the gamma dose-rate is relatively homogeneous in the sediments over distances of several meters. This average value was used to calculate the TL age estimates listed in table 1.

The four samples from Layer 2 produced coherent TL ages (DJ1: 227 ± 30 ka; DJ2: 210 ± 34 ka; DJ21: 259 ± 26 ka; DJ22: 243 ± 26 ka), which are significantly older than the two age estimates obtained for Layer 1 above (DJ6: 140 ± 13 ka and DJ15: 138 ± 15 ka). It is also noteworthy that two samples, DJ6 and DJ15, produce similar results despite significantly different radioisotopic contents and internal dose-rates differing by more than a factor of two (see table 1). The same coherence can be noticed for Layer 2 since samples DJ1 and DJ2 show internal dose-rates of 85 and 486 µGy/a, respectively. The consistency of these results support the idea that the average gamma dose rate estimate is likely representative for all the dated specimens.

By plotting these radiometric data against the marine isotopic scale24 (fig. 5), it seems that the TL ages reflect at least two distinct human occupation phases, one (or perhaps two) at the boundary Marine Isotopic Stages (MIS) 8-7 or during MIS 7, and another in the second half of MIS 6. Consequently, these results show that human occupations occurred 210/260 ka ago and later around 140 ka, with a long chronological gap between them corresponding to the sterile layer observed in the field and to possible erosive episodes not fully identified in the excavation records. These new chronological data indicate that the makers of the laminar Early Middle Palaeolithic industries in the Southern Caucasus were generally contemporary with their counterparts in the Levant, and shared a techno-typological tradition of blade production and use. However it is currently impossible to test whether these similarities result from the range expansion of a single population, information exchange over large territories, or technological convergence.

DISCUSSION

The archaeological and radiometric data from Djruchula Cave speak to the short-term occupation of the site by Early Middle Palaeolithic hominins between 260 and 140 ka ago. Most of the lithic artifacts from Layer 1 are retouched points that arrived on site as prepared blanks, perhaps as a form of “personal gear,”25 and were resharpened and modified as indicated by their high frequency of retouch and the small number

Table 1 – Radioisotope contents (U, Th, K) of each flint sample were measured by neutron activation analysis at the Pierre Süe Laboratory (JORON, 1974) and have a precision of 10%. The µ-sensibility (µGy/a/10⁻³ alpha/cm²) was determined by comparing the TL signals induced by alpha and beta particles originating from a Pu-238 and a Sr-90 artificial sources, respectively. The alpha and beta dose-rates were deduced from the radioisotope contents and dose-rate conversion factors calculated by ADAMIEC and AITKEN, 1998. The cosmic dose-rate was estimated to 20 µGy/a from the thickness of the rock roofing and data from PRESCOTT and HUTTON, 1988. The equivalent dose was computed according to MERCIER et al., 1992 in using the 380°C TL signal.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Layer</th>
<th>Square</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>K (%)</th>
<th>α-sens.</th>
<th>Dose-Rate (µGy/a)</th>
<th>Equivalent Dose (Gy)</th>
<th>Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJ6</td>
<td>1</td>
<td>H8</td>
<td>1.454</td>
<td>0.076</td>
<td>0.037</td>
<td>22.5</td>
<td>560 244 813 66 1233 111 2046 130 286 14 140 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJ15</td>
<td>1</td>
<td>I7</td>
<td>0.859</td>
<td>0.139</td>
<td>0.064</td>
<td>14.4</td>
<td>170 150 328 22 1220 110 1546 112 213 16 138 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJ1</td>
<td>2</td>
<td>I13</td>
<td>0.096</td>
<td>0.050</td>
<td>0.031</td>
<td>23.5</td>
<td>44 40 85 7 1207 109 1293 109 294 26 227 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJ2</td>
<td>2</td>
<td>C14</td>
<td>0.860</td>
<td>0.099</td>
<td>0.039</td>
<td>18.0</td>
<td>300 173 486 38 1169 106 1655 112 348 59 210 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJ21</td>
<td>2</td>
<td>I8</td>
<td>0.359</td>
<td>0.061</td>
<td>0.028</td>
<td>14.6</td>
<td>83 76 171 14 1233 111 1404 112 364 15 259 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJ22</td>
<td>2</td>
<td>F13</td>
<td>0.145</td>
<td>0.084</td>
<td>0.033</td>
<td>19.3</td>
<td>55 49 106 7 1207 109 1314 109 319 17 243 26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Human presence also seems possible at the end of MIS 6.

Assemblages containing blades produced from large prismatic cores are known from the Kaphthurin Formation, Kenya, and date to > 240 ka (K-Ar ages)\(^{27}\) and 509-545 ka (Ar-Ar ages) at the base of the Formation.\(^{28}\) Systematic and intensive blade production is documented at Middle Pleistocene sites in Southwestern Asia stratigraphically included in the Acheuleo-Yabrudian sequence (Lower Palaeolithic). These include the “Pre-Aurignacian” from Yabrud\(^{29}\) and the “Amu- dian” from Tabun Cave,\(^{30}\) Abri Zumofen/Adlun,\(^{31}\) Zuttiyeh Cave,\(^{32}\) Maslouk\(^{33}\) and Qesem Cave.\(^{34}\) Recent U-series dating of the long archaeological sequence at Qesem Cave provides an age range from 210-380 ka\(^{15}\) for the Amudian layers, which is close to the TL date of 264 ± 28 ka for the same industry from Unit XI at Tabun Cave.\(^{36}\) Nevertheless, more radiometric analyses are required in order to precisely date these late Lower Palaeolithic laminar assemblages.

Unlike Amudian/Pre-Aurignacian assemblages, more recent Early Middle Palaeolithic blade assemblages, called the “Early Levantine Mousterian,” are known from several Northern and Southern Levantine sites that are stratigraphically positioned above the Acheuleo-Yabrudian complex. Recent technological studies show that this Early Middle Palaeolithic entity, less homogeneous than previously thought, includes assemblages with variable reduction strategies for blade production (both Levallois and/or prismatic blade technologies)\(^{37}\) and different tool-kits. Based on technological and typological criteria, two separate groups of blade-dominated assemblages are discernable.\(^{38}\) The first group, characterized by the prevalence of the Laminar method and numerous elongated retouched points and blades is recognized in Layers lower E (as in Layer 1), assuming issues of mass versus potential utility are of primary concern.\(^{26}\) In these respects the qualitative and quantitative difference identified between the assemblages from each layer reflect differing strategies of mobility and raw material transport and use.

Early blade technologies in the Middle Palaeolithic and even the Late Lower Palaeolithic are known from several localities in the Old World, but few of these are securely dated. Assemblages containing blades produced from large cores. The lithic assemblage from Layer 2, which contains fewer imported retouched points, is represented by a higher frequency of cores and by-products and flakes, often on strictly local raw material, and documents the production of an expedient industry. These data are generally in agreement with studies that suggest highly mobile foragers should preferentially choose to transport blanks (as in Layer 1), rather than cores (as in Layer 2), assuming issues of mass versus potential utility are of primary concern.\(^{26}\) In these respects the qualitative and quantitative difference identified between the assemblages from each layer reflect differing strategies of mobility and raw material transport and use.

Fig. 5 – TL ages versus Marine Isotopic Stages (MIS) (BASSINOT et al., 1994). The results indicate a possible occupation of the cave at the end of MIS 8 or at the beginning of MIS 7 and during this stage. Human presence also seems possible at the end of MIS 6.

Paléorient, vol. 36.2, p. 163-173 © CNRS ÉDITIONS 2010
(including burins) more diversified, is represented by assemblages from Tabun Cave Unit IX, TL-dated to 256 ± 26 ka42 and Rosh Ein Mor, tentatively dated to 201 ± 9 ka on ostrich eggshell with the U-series method.43 The dates currently available, albeit few, demonstrate that these two groups do not represent successive stages in the evolution of laminar technology44 but developed side by side in the Levant between 160 and 270 ka45 and thus all belong to a single technical entity, the Leptolithic techno-complex.

The lithic assemblages from Djruchula Cave, represented by both Laminar and Levallois systems and with tool-kits composed mainly of elongated retouched points and blades, are thus closely affiliated with the first group. They could belong to this widespread technical entity identified in South-Western Asia. While the available data are insufficient to document clear demographic links between the Southern Levant and the Southern Caucasus, it is probable that sites such as Djruchula, Koudaro and Tsona Caves (2,000-2,200 m asl) are the northern-most representatives of the Early Middle Palaeolithic Leptolithic techno-complex. It seems that the High Caucasus mountains served as a natural barrier at that time and limited the expansion of the Middle Palaeolithic leptolithic tradition to the North (Russian Plains, Central Europe) where these industries are still unknown.

Laminar technologies appear somewhat later in Europe. Northern Europe is especially rich in early blade industries such as those from Northwest France,46 Germany47 and Belgium.48 As in the Levant, various core reduction strategies for blade production are involved (Levallois for elongated blanks and Laminar). Interestingly, most of these assemblages date to MIS 5 a-d (beginning of the Last Glacial), and they tend to disappear from later Middle Palaeolithic assemblages found within the same regions; there is no evidence for a shift to the use of blades in the Late/Final Mousterian.

Given the geographic and temporal discrepancy between Northern Europe and the Levant, the development of the laminar assemblages in each region must be considered as a case of technological convergence, however blade technology waxes and wanes markedly over time and early blade-based assemblages are in general subsequently replaced by flake-based technologies later in the Middle Palaeolithic.49 It appears that this technological option was utilized periodically by Middle Palaeolithic hominins only in certain regions, whereas the use of blades and bladelets was a major and widespread component of Early Upper Palaeolithic hominins who occupied the same areas of Western Eurasia 45 ka ago.

ACKNOWLEDGMENTS

This work was carried out in the framework of a research program conducted by O. Bar-Yosef and supported by the American School of Prehistoric Research (Peabody Museum, Harvard University). D.S. Adler recognizes the Wenner-Gren Foundation for Anthropological Research (Grants 6881 and 7059), the L.S.B. Leakey Foundation, the American School of Prehistoric Research at Harvard University, and the Davis Center for Russian Studies at Harvard University for their generous financial support. The dating program was supported by CNRS and CEA (France).

Norbert MERCIER
CNRS-UMR 5060 Institut de recherche sur les archéomatériaux
Université de Bordeaux
Centre de recherche en physique appliquée à l’archéologie (CRP2A)
Maison de l’archéologie
33607 Pessac Cedex – FRANCE
norbert.mercier@u-bordeaux3.fr

Hélène VALLADAS
CNRS-UMR 8212 Laboratoire des sciences du climat et de l’environnement
Domaine du CNRS
Avenue de la Terrasse – Bât. 12
91198 Gif-sur-Yvette – FRANCE
helene.valladas@lsce.cnrs-gif.fr

Liliane MEIGNEN
CNRS-UMR 6130 CEPAM
Université Nice Sophia-Antipolis
24, avenue des Diabлы bleus
06357 Nice Cedex 4 – FRANCE
liliane.meignen@unice.fr

Jean-Louis JORON
Groupe des Sciences de la Terre
Laboratoire Pierre Süe, Saclay
91191 Gif-sur-Yvette Cedex – FRANCE
jean-louis.joron@cea.fr

Nicholas TUSHABRAMISHVILI
Georgian National Museum
3 Rustaveli Ave.
0103 Tbilisi – GEORGIA
nikatushi@hotmail.com

49 Bar-Yosef and Kuhn, 1999.
BIBLIOGRAPHY

ADAMIĆ G. and AITKEN M.J.

ADLER D.S.

ADLER D.S. and TUSHARRAMISHVILI N.

ADLER D.S., BELFER-COHEN A. and BAR-YOSEF O.

ADLER D.S., BAR-ÖZ G., BELFER-COHEN A. and BAR-YOSEF O.

ADLER D.S., BAR-YOSEF O., BELFER-COHEN A., TUSHARRAMISHVILI N., BOARETTO E., MERCIER N., VALLADAS H. and RINK W.J.

BAKDACH J.

BARKAI R., GOPHER A. and SHIMELMITZ R.

BARKAI R., GOPHER A., LAURITZEN S. and FRUMKIN A.

BAR-YOSEF O.

BAR-YOSEF O. and KUHN S.

BAR-YOSEF O., BELFER-COHEN A. and ADLER D.S.
2006 The Implications of the Middle-Upper Palaeolithic Chronolo- gical Boundary in the Caucasus to Eurasian Prehistory. *Anthropo- logic* 85,1: 49-60.

BASSINOT F., LABEVRIE L., VINCENT E., GUIDELLEUR X., SHACKLETON N. and LANCELOY Y.

BELIAEVA E. and LIUBIN V.P.

BINFORD L.R.

BOEDA É.

CONRAD N.J.

COPELAND E.

Literature

Gisik I. and Bar-Yosef O.

Meignen L. and Tushibramishvil N.

Dating the Early Middle Palaeolithic Laminar Industry from Djruchula Cave, Republic of Georgia

MESHVELIANI T., BAR-YOSEF O. and BELLER-COHEN A.

MONIGAL K.

OYHE M.

PRESSEY J.R. and HUTTON J.T.

RÉVILLON S.

RÉVILLON S. et TUFFREAU A.

RINK W.J., RICHTER D., SCHWARZ H.P., MARKS A.E., MONIGAL K. and KAUFMAN D.

RINK W.J., SCHWARZ H.P., WERNER S., GOLDBERG P., MEIGNEN L. and BAR-YOSEF O.

RUST A. von

SKINNER J.H.

TEXIER P.J.

TUSHBRAMISHVILI D.M.

TUSHBRAMISHVILI N.

VALLADAS H.

VALLADAS H., MERCIER N., JORON J.-L. and REYS S.J.L.

WEINSTEIN-ERVON M., BAR-OZ G., ZAITNER Y., TSATSKIN A., DRUCK D., PORAT N. and HERSHKOVITZ I.

2003 Introducing Misiya Cave, Mount Carmel, Israel: A New Continuous Lower/Middle Paleolithic Sequence in the Levant. Eurasian Prehistory 1,1: 31-55.

Paléorient, vol. 36.2, p. 163-173 © CNRS ÉDITIONS 2010

Pour toute information relative à la diffusion de nos ouvrages, merci de bien vouloir contacter notre service lecteurs :

CNRS – Paléorient
Maison René Ginouvès, USR 3225
21, allée de l’Université
F-92023 NANTERRE Cedex
Tél. : 33+(0)1.46.69.24.08 – Fax : 33+(0)1.46.69.24.33
Courriel : paleorient@mae.u-paris10.fr
Site Internet : www.mae.u-paris10.fr/paleo_index.htm

Paléorient volumes 3 (1975-1977) to 6 (1980) have been published as single annual volumes. From volume 7/1 (1981) Paléorient is once again published with two issues per year. Standing orders can be delivered regularly.

For any information concerning the distribution of our publications please contact:

CNRS ÉDITIONS
15, rue Malebranche, F-75005 PARIS
Tél. : 01.53.10.27.00 - Fax : 01.53.10.27.27
Courriel : cnrseditions@cnrseditions.fr
Site Internet : www.cnrseditions.fr

En application du Code de la propriété intellectuelle, CNRS ÉDITIONS interdit toute reproduction intégrale ou partielle du présent ouvrage, sous réserve des exceptions légales.

© CNRS ÉDITIONS, Paris, 2011
Articles

BARZILAI O. and GORING-MORRIS A.N.
Bidirectional Blade Production at the PPNB Site of Kfar HaHoresh: The Techno-Typological Analysis of a Workshop Dump 5-34

MARRO C.
Where did Late Chalcolithic Chaff-Faced Ware originate? Cultural Dynamics in Anatolia and Transcaucasia at the Dawn of Urban Civilization (ca 4500-3500 BC) 35-55

GEYER B., AWAD N., AL-DBIYAT M., CALVET Y. et ROUSSET M.-O.
Un « Très Long Mur » dans la steppe syrienne 57-72

LAFONT B.
Contribution de la documentation cunéiforme à la connaissance du « Très Long Mur » de la steppe syrienne 73-89

SPATARO M. and FLETCHER A.
Centralisation or Regional Identity in the Halaf Period? Examining Interactions within Fine Painted Ware Production 91-116

WILLIAMS J.K. and BERGMAN C.A.
Upper Paleolithic Levels XIII-VI (A and B) from the 1937-1938 and 1947-1948 Boston College Excavations and the Levantine Aurignacian at Ksar Akil, Lebanon 117-161

Notes et variétés

MERCIER N., VALLADAS H., MEIGNEN L., JORON J.-L., TUSHABRAMISHVILI N., ADLER D.S. and BAR-YOSEF O.
Dating the Early Middle Palaeolithic Laminar Industry from Djruchula Cave, Republic of Georgia 163-173

Notes on Arboricultural and Agricultural Practices in Ancient Iran based on New Pollen Evidence 175-188

ROSENBERG D., YESHURUN R., GROMAN-YAROSLAVSKI I., WINTER H., ZERTAL A., BROWN-GOODMAN R. and NADEL D.
Huzuq Musa – A Preliminary Report on the Test Excavation at a Final Epipalaeolithic/PPNA Site in the Jordan Valley 189-204

Recensions

